Warm Up

1) Solve the nonlinear system.

$$
\begin{array}{cc}
y=x^{2}-6 x+11 \quad+x+7=x^{2}-6 x+11 \\
y=-4+7 & 0=x^{2}-5 x+4 \\
y=-x+7) & y=3 \\
y=-1+7 & 0=(x-1)(x-1) \\
y=6 & (4,3)=4(1,6)
\end{array}
$$

2) Solve the nonlinear system.

$$
\begin{aligned}
& x^{2}+(y=-5 \\
& x-y=-3 \\
& -1-x+y=3)
\end{aligned}
$$

$$
\begin{gathered}
x^{2}+x=-8 \\
x^{2}+x+8=0 \\
x=\frac{-1 \pm \sqrt{1^{2}-4(1)(8)}}{2(1)}
\end{gathered}
$$

*Check HW

*Go over DLT's

*Green WS

*Green Pass the Rroblem Cards
 http://www.online-stopwatch.com countdown-timer/

$$
\begin{aligned}
& y=-x^{2}-2 x-1 \quad y \text {-intaript } x=-\frac{b}{2 a} \\
& x+y=-3 \quad(0,-1) \\
& x=\frac{-(-2)}{2(-1)}=\frac{-2}{-2}
\end{aligned}
$$

13. Solve the following non - linear system.

$$
\left\{\begin{array}{l}
y=|x-3|+1 \\
x+2 y=8
\end{array}\right.
$$

A) $(0,4)$
B) $(4,2)$
C) $(4,2)$ and $(0,4)$
D) they don't intersect
E) None of these
14. An equation is shown, where a, b, and c are integers.

$$
y=a(x-b)^{2}+c
$$

Brian claims that this equation will always have two roots.
Scott claims that this equation will always have zero roots.
Which of the following equations shows that both Brian and Scott are incorrect?
A) $y=\frac{-}{2}(x+5)^{2}$
C) $y=3(x-6)^{2}+3$
B) $y=\frac{-1}{3}(x+3)^{2}+8$
3
7. Which of the following is NOT a solution of $(x+2)(x-4)(x+1)(x-3)=0$?
A) -1
B) 3
C) -3
D) 4
E) None of
these
8. Factor the polynomial completely: $x^{3}-5 x^{2}-4 x+20$
A) $\left(x^{2}-4\right)(x-5)$
B) $(x+2)(x-2)(x-5)$
C) $(x+2)(x+2)(x-5)$
D) not factorable E) None of these
9. Solve the equation: $5 x^{6}-20 x^{2}=0$
A) $x=0, \sqrt{2},-\sqrt{2}, i \sqrt{2},-i \sqrt{2}$
B) $x=0,2,-2,2 i,-2 i$
C) $x=4,-4$
D) $x=0$
E) None of these

Chapter 3

Advanced Systems Analysis (3.3) Linear Inequalities and Linear Programming

Graphing a system of linear inequalities
GRAPH, TEST, SHADE
< or > use a dashed line
\leq or \geq use a solid line
i Test a point (usually $(0,0)$) to determine shading
${ }^{\wedge}$ Shade darker the overlapping regions.
This is the solution to the system.
\hat{z} If regions don't overlap-no solution

$$
\begin{gathered}
0 \geq-1 \\
\text { Ex: } y \geq x-1 \\
x>2 \\
y>0
\end{gathered}
$$

*Practice ws on graphing inequalities.

Linear Programming

What is it?
A mathematical technique for maximizing (revenue) or minimizing (costs) of a linear function of several variables

Who uses it?
Computer Programmers
Restaurants (menu planning - optimizes meal production and increases restaurant profits)

Coca - Cola (optimal production in bottling plants while keeping costs as low as possible = more money in their pocket)

Economics \& Business (planning, routing, scheduling, assignments, and design)

Cell Phone Companies (network flow problems and fixing them)

$$
\begin{aligned}
& C=3 x+2 y \quad \text { Find the max and min of the } \\
& \begin{array}{l}
C=3 x+2 y \times y^{y} \\
x \geq 0 \quad \begin{array}{l}
(0,2) \\
=3(0)+2(2)
\end{array}
\end{array} \\
& y \geq 0 \text {. } \quad c=4 \\
& x+2 y \leq 4 \quad\left(\frac{(0,0)}{=3(0)+2 \log)}\right. \\
& \begin{array}{c}
0+2(0) \leq 4 \quad \frac{c=0}{(4,0)} \\
0 \leq 4 \quad(-34,2
\end{array} \\
& \text { - } 0 \leq 4 \frac{(\sqrt{5}(4)+2(2)}{\substack{12}} \\
& \text { objective function. }
\end{aligned}
$$

Objective Quantity
The graph of the constraints -a value to be optimized ${ }^{\text {is called the feasible region. }}$ -looking for its maximum or minimum value Constraints
-restrictions on the objective quantity

Feasible Region

-the set of all points that make all of the constraints "true" k

$$
\begin{aligned}
& 0 \geq-2(0)+5 \text { If the feasible region is } \\
& 625 \\
& \text { unbounded, then there does } \\
& \text { not have to be a max or a } \\
& \text { min. }
\end{aligned}
$$

1) Define Variables
x:

5) Find Intersection Points

y:
2) Objective Function
(Cost or Profit)
3) Constraint Equations
4) Graph

Homework:
Finish green ws
Finish graphing inequalities ws
Finish Linear programming packet

